University of Ibn-Khaldoun, Tiaret
 Faculty of Matter Sciences

$1^{\text {st }}$ year master Medical Physics
 Solution of the exam: Physics of ionised media
 Year 2023/2024

Ex 01: (5pt)
The following relation can be used:

$$
\begin{align*}
& \omega_{\mathrm{p}}=\sqrt{\frac{n_{\mathrm{e}} e^{2}}{\varepsilon_{0} m_{\mathrm{e}}}} \tag{1.5pt}\\
& \lambda_{\mathrm{D}}=\sqrt{\frac{T_{\mathrm{e}}}{m_{\mathrm{e}}}} \omega_{\mathrm{p}}^{-1}=\sqrt{\frac{\varepsilon_{0} T_{\mathrm{e}}}{n_{\mathrm{e}} e^{2}}}
\end{align*}
$$

For a cell of a typical plasma display:
$\mathrm{n}_{\mathrm{e}}=1.6610^{17} \mathrm{~cm}^{-3}$ and $\mathrm{T}_{\mathrm{e}}=1.32 \mathrm{eV}\left(1.5310^{4} \mathrm{~K}\right) \quad(0.5 \mathrm{pt})+(0.5 \mathrm{pt})$
For a fluorescent lamp:
$\mathrm{n}_{\mathrm{e}}=10^{10} \mathrm{~cm}^{-3}$ and $\mathrm{T}_{\mathrm{e}}=1 \mathrm{eV} \quad\left(1.1610^{4} \mathrm{~K}\right) \quad(0.5 \mathrm{pt})+(0.5 \mathrm{pt})$
Ex 02: (5pt)
Replacing the Debye-Huckel potential into the Poisson equation and calculate Laplace operator in spherical coordinates
$\nabla^{2} \varphi(r)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \varphi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \varphi}{\partial \theta}\right)+\frac{1}{r^{2} \sin \theta^{2}} \frac{\partial^{2} \varphi}{\partial \emptyset^{2}} \quad$ (1) (1pt)
Replacing Debye-Huckel potential $\varphi(r)=\frac{e}{4 \pi \varepsilon_{0}} \frac{\exp \left(-\frac{r}{\lambda_{D}}\right)}{r}$ in equation (1) gives $\nabla^{2} \varphi(r)=\frac{\varphi(r)}{r_{D}^{2}} \quad$ (3) where $r_{D}=\lambda_{D}$ (2pt)

- Equation (3) is Poisson equation $\nabla^{2} \varphi(r)=-\frac{\rho}{\varepsilon_{0}}$ therefore the charge density is expressed as $\rho=-\varepsilon_{0} \frac{\varphi(r)}{r_{D}^{2}}=-\frac{e}{4 \pi r_{D}^{2}} \frac{\exp \left(-\frac{r}{\lambda_{D}}\right)}{r}$

Ex 03: (4pt)

The drift velocity is given by the relation $\overrightarrow{\mathrm{V}_{\mathrm{D}}}=\frac{\overrightarrow{\mathrm{E}} \Lambda \overrightarrow{\mathrm{B}}}{\mathrm{B}^{2}}===>\mathrm{V}_{\mathrm{D}}=\frac{\mathrm{E}}{\mathrm{B}}=10^{6} \mathrm{~m} / \mathrm{s}$

$$
(2 \mathrm{pt}) \quad(2 \mathrm{pt})
$$

Ex 04: (6pt)
The cold plasma hypothesis means that the electrons only move under the influence of the field $\boldsymbol{E}=\boldsymbol{E}_{\mathbf{0}} e^{i \omega t}$, so that:
$\boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}} e^{i \omega t}$
Substituting this solution into the equation

$$
m_{e} \frac{\mathrm{~d} \boldsymbol{v}}{\mathrm{~d} t}=-e \boldsymbol{E}-m_{e} \nu \boldsymbol{v}
$$

gives $\quad \boldsymbol{v}=-\frac{e \boldsymbol{E}_{0}}{m_{e}} \frac{1}{\nu+i \omega} \mathrm{e}^{i \omega t}$
By definition, the current density can be written $=-e n \boldsymbol{v}=\sigma \boldsymbol{E}$, from which (0.5pt)

$$
\begin{equation*}
\sigma=\frac{n e^{2}}{m_{e}} \frac{1}{\nu+i \omega} \tag{0.5pt}
\end{equation*}
$$

- To develop equation wave equations for the oscillating electric and magnetic field, we first consider Faraday's law and Ampere's law

$$
\begin{align*}
& \nabla \times \mathbf{E}=\frac{i \omega}{c} \mathbf{B} \tag{1}\\
& \nabla \times \mathbf{B}=\frac{4 \pi}{c} \sigma \mathbf{E}-\frac{i \omega}{c} \mathbf{E} . \tag{0.5pt}
\end{align*}
$$

$\mathrm{Eq}(2)$ can be written

$$
\begin{equation*}
\nabla \times \mathbf{B}=-\frac{i \omega}{c} \epsilon \mathbf{E} \tag{3}
\end{equation*}
$$

Where $\varepsilon=1+i \frac{4 \pi \sigma}{\omega}$ define the dielectric function of the plasma
Using equation (1) in eq(3) gives,

$$
\nabla^{2} \mathbf{E}-\nabla(\nabla \cdot \mathbf{E})+\frac{\omega^{2}}{c^{2}} \epsilon \mathbf{E}=0
$$

$$
\begin{equation*}
(0.5 \mathrm{pt}) \tag{4}
\end{equation*}
$$

Since $\nabla \cdot \mathbf{E}=\mathbf{0}$ and assuming a spatial dependence of $\exp (i \mathbf{k} \cdot \mathbf{x})$ then eq (4) and (0.5pt) (0.5pt)
gives the dispersion relation for electromagnetic waves in plasma

$$
\begin{equation*}
\frac{\omega^{2}}{c^{2}} \epsilon=k^{2} \tag{5}
\end{equation*}
$$

